Using hidden Markov models for speech enhancement

نویسندگان

  • Akihiro Kato
  • Ben P. Milner
چکیده

This work presents an approach to speech enhancement that operates using a speech production model to reconstruct a clean speech signal from a set of speech parameters that are estimated from the noisy speech. The motivation is to remove the distortion and residual and musical noises that are associated with conventional filtering-based methods of speech enhancement. The STRAIGHT vocoder forms the model for speech reconstruction and requires a time-frequency surface and fundamental frequency information. Hidden Markov model synthesis is used to create an estimate of the time-frequency surface and this is combined with the noisy surface using a perceptually motivated signal-to-noise ratio weighting. Experimental results compare the proposed reconstruction-based method to conventional filtering-based approaches of speech enhancement.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Speech enhancement based on hidden Markov model using sparse code shrinkage

This paper presents a new hidden Markov model-based (HMM-based) speech enhancement framework based on the independent component analysis (ICA). We propose analytical procedures for training clean speech and noise models by the Baum re-estimation algorithm and present a Maximum a posterior (MAP) estimator based on Laplace-Gaussian (for clean speech and noise respectively) combination in the HMM ...

متن کامل

PCA-Based Speech Enhancement For Distorted Speech Recognition

This paper deals with application of speech recognition using distorted speech signal. When speech signal is given as an input to any system some background noise always gets added to it which is undesirable. In order to overcome this difficulty we transform the signal using Kernel Principal Component Analysis and then the task of recognition is done using the Hidden Markov Models. The develope...

متن کامل

Enhancement and recognition of noisy speech within an autoregressive hidden Markov model framework using noise estimates from the noisy signal

This paper describes a new algorithm to enhance and recognise noisy speech when only the noisy signal is available. The system uses autoregressive hidden Markov models (HMMs) to model the clean speech and noise and combines these to form a model for the noisy speech. The probability framework developed is then used to reestimate the noise models from the corrupted speech waveform and the proces...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014